Torus Actions on Weakly Pseudoconvex Spaces
نویسنده
چکیده
We show that the univalent local actions of the complexification of a compact connected Lie group K on a weakly pseudoconvex space where K is acting holomorphically have a universal orbit convex weakly pseudoconvex complexification. We also show that if K is a torus, then every holomorphic action of K on a weakly pseudoconvex space extends to a univalent local action of KC.
منابع مشابه
Global Regularity of the @-neumann Problem: a Survey of the L2-sobolev Theory
The fundamental boundary value problem in the function theory of several complex variables is the ∂-Neumann problem. The L2 existence theory on bounded pseudoconvex domains and the C∞ regularity of solutions up to the boundary on smooth, bounded, strongly pseudoconvex domains were proved in the 1960s. On the other hand, it was discovered quite recently that global regularity up to the boundary ...
متن کاملA Statistical Study of two Diffusion Processes on Torus and Their Applications
Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...
متن کاملOn the Existence of Star Products on Quotient Spaces of Linear Hamiltonian Torus Actions Hans-christian Herbig, Srikanth B. Iyengar and Markus J. Pflaum
We discuss BFV deformation quantization [5] in the special case of a linear Hamiltonian torus action. In particular, we show that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of [2] for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products.
متن کاملOn Analytic Interpolation Manifolds in Boundaries of Weakly Pseudoconvex Domains
Let Ω be a bounded, weakly pseudoconvex domain in Cn, n ≥ 2, with real-analytic boundary. A real-analytic submanifold M ⊂ ∂Ω is called an analytic interpolation manifold if every real-analytic function on M extends to a function belonging to O(Ω). We provide sufficient conditions for M to be an analytic interpolation manifold. We give examples showing that neither of these conditions can be rel...
متن کاملOn the Existence of Star Products on Quotient Spaces of Linear Hamiltonian Torus Actions
We discuss BFV deformation quantization (Bordemann et al. in A homological approach to singular reduction in deformation quantization, singularity theory, pp. 443– 461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus action. In particular, we show that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephra...
متن کامل